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Abstract

The theory of open quantum systems strives to explain the behaviour of many-body systems
obeying the laws of quantum mechanics, which are in some way controlled by the effects of their
environment. Examples of open systems can be found across a broad range of scientific research
and include multicellular lifeforms, solar cells, and financial systems. In fact most realistic
physical systems can be modelled as open many-body systems. The question which one often
aims to answer in the study of these systems, is how they evolve through time and whether they
settle down to a state of equilibrium (i.e. reach their steady state). Investigation of the time
evolution of open quantum many-body systems has been a long-standing problem in the past
decades. Although the dynamics of these systems can theoretically be described, the resulting
equations are in practice very difficult to solve due to the myriad of variables at hand.

In this thesis, we consider a rather general description of such a system, a many-level electron
system in a photon cavity which is weakly coupled to its environment. Using a generalized
master equation called the Nakajima-Zwanzig equation, we consider the steady-state of the
system. We show that the assumption that the electron transport is a short-memory process
induces a Dirac measure on the components of the dissipator in the equation. By investigating the
relation between these components and their corresponding measures we use algebraic methods
to represent these relations in terms of the physical operators at play. By casting the equation
into the Liouville Tensor Space we obtain an eigenvalue problem in terms of the density operator.
Within this framework we derive a computational model which solves the eigenvalue problem,
thus allowing us to determine the steady-state of the system as well as an approximation of its
transient behaviour over very long time scales.

Útdráttur

Hegðun fjöleinda kerfa sem lúta lögmálum skammtafræðinnar og stýrast af áhrifum ytra umhver-
fis er umfjöllunarefni eðlisfræði opinna skammtakerfa. Slík kerfi má finna á ýmsum sviðum
vísinda og má sem dæmi nefna fjölfrumunga, sólarrafhlöður og fjármálakerfi. Í raun má líta
á flest öll kerfi eðlisfræðinnar sem opin fjöleindakerfi. Þær spurningar sem oft er leitast eftir
að svara fyrir slík kerfi varðar það hvernig þróun þeirra með tíma á sér stað og hvort þau leiti
í stöðugt ástand sem megi ákvarða. Rannsóknir á tímaþróun slíkra kerfa hafa reynst erfiðar
viðfangs í nokkra áratugi. Jafnvel þótt hreyfifræði slíkra kerfa megi fræðilega lýsa þá reynast
jöfnurnar oft of flóknar til þess að hægt sé að leysa þær vegna hins gífurlega fjölda breyta sem
þar fyrirfinnast.

Í þessari ritgerð athugum við fremur almenna lýsingu á slíku kerfi, þ.e. fjölstiga rafeindakerfi í
ljóseindaholi sem er veiktengt við umhverfi sitt. Með því að nota skammtastýrijöfnu Nakajima
og Zwanzig athugum við sístöðuástand kerfisins. Við sýnum að sú forsenda að kerfið búi við
minnistap gefi af sér Dirac mál fyrir virkjastök sem lýsa orkutapi. Við nánari athugun má sjá
að venslin milli þessara staka og tilheyrandi Dirac máls megi lýsa með algebraískum aðferðum
með tilliti til hinna eðlisfræðilegu virkja sem lýsa kerfinu. Með því að varpa jöfnunni í Liouville
þinrúmið fáum við eigingildisverkefni sem lýsir þéttleikavirkjanum á gefnum tíma. Út frá þessari
hugmyndafræði útbúum við líkan sem útbýr og leysir eigingildisverkefnið með tölvureikningum
og leyfir okkur þar með að ákvarða sístöðuástand kerfisins ásamt því að gefa mat á hverfulu
ástandi þessi.
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1 Introduction

1.1 The Physical Model

An important problem in physics is the description of an open system, i.e. a central system, cou-
pled to external reservoirs. Here, we will especially consider an electron system on the nanometer
scale, weakly coupled to external leads. Originally, for time t < 0, the three subsystems are not
coupled and are each in an equilibrium state. In the leads the electrons occupy the energy levels
according to the Fermi distribution with a definite chemical potential. After the coupling, the
difference in the chemical potentials (the bias), drives a current through the central system. At

Figure 1.1: A photon cavity, weakly coupled to external leads, acting like an elec-
tron reservoir.

any given time a measurement on the system yields information about an ensemble of states.
But as the measurement is intrinsically probabilistic, to describe the system we consider the
probability of measuring, at any given time, any mixture of states. For a many-body system,
such a description is given by the density operator [1].

ρ(t) =
∑
i

pi|Ψi(t)〉〈Ψi(t)|, (1.1)

where pi is the probability of the system being in the pure state Ψi at time t. In the study
of quantum many-body systems, the Hilbert space considered is a direct sum of Hilbert spaces
containing any number of many-body states. This space is called the Fock space.

We use a method introduced by Nakajima and Zwanzig at the end of the 1950’s to model
our system using the Hamiltonian introduced in [2]. In order to understand the mathemati-
cal construction of this model, we shall give an introduction to the underlying mathematical
theory.

1.2 Stochastic Processes & Master Equations

The transport of electrons through a photon cavity can be viewed as a stochastic process. Given
a probability space (Ω,F ,P), a family of random variables (Xt)t∈T on the space with T being
a totally ordered subset of R, is called a stochastic process. One can also represent it as the
map X : Ω × T −→ R. We say that a stochastic process has a short memory if its future state
depends only on its most recent state. This is also called the Markov condition. To express this
property in a continuous probability space we introduce the idea of a filtration of a stochastic
process.
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1 Introduction

Definition 1.2.1. A filtration (Ft)t∈T of a stochastic process (Xt)t∈T is a σ-algebra such that
for each t ∈ T we have Xt ∈ Ft and for each s, t ∈ T such that s < t we have Fs ⊂ Ft.

It can be seen from the definition that for a given stochastic process, its filtration at time t
contains all the past history of the process. The Markov condition can be expressed in terms
of the conditional probability measure [3], i.e. if A ∈ F then for s < t the Markov condition
requires that

P(Xt ∈ A|Fs) = P(Xt ∈ A|Xs). (1.2)

This condition can also be expressed in terms of conditional probability densities. First, we
introduce the joint probability density pm with respect to the joint probability measure as,

P(Xtm ∈ Am; ...;Xt1 ∈ A1) =

∫
Am

dxm...

∫
A1

dx1pm(xm, tm; ...;x1, t1), (1.3)

where Ai ∈ Fi for 1 ≤ i ≤ m. The Markov condition can now be expressed as,

p1|m(x, t|xm, tm; ...;x1, t1) = p1|1(x, t|xm, tm). (1.4)

The probability density p1|1(x, t|x′, t′) is called the propagator, it describes the probability den-
sity of the value x at time t assuming some prior event x′ at time t′.

To see how stochastic processes can be used to define master equations describing systems that
depend on such processes, we introduce the concept of a semigroup of operators.

Let Y be a Banach space, a strongly continuous semigroup of operators on Y is a family of
operators (T (t))t≥0 such that,

• T (0) = I,

• for t, s ≥ 0: T (t+ s) = T (t)T (s),

• for x ∈ Y : ‖T (t)x− x‖ → 0 as t→ 0+,

where I is the identity operator on X. An infinitesimal generator of T is defined as,

Ax = lim
t→0+

1

t
(T (t)− I)x, (1.5)

where x is some point in X. Given a function u0 and a closed operator A on Banach space X,
the abstract Cauchy problem is given by,{

∂tu(x, t) = Au(x, t), for t ≥ 0

u(x, 0) = u0(x).
(1.6)

The existence of a solution is equivalent to the operator A being a generator of a strongly con-
tinuous semigroup. Its solution can then be given in terms of the semigroup which A generates.
That is, if T is such a semigroup then we have T (t)u0(x) = u(x, t). In this case the relation
between T and A is written as,

T (t) = eAt (1.7)

where,

eAt =

∞∑
n=0

An

n
(1.8)

Thus, the solution u(x, t) may be found by solving the operator equation

∂T

∂t
= AT (1.9)

In functional analysis equations of this form are called evolution equations.

Let Pt be a propagator defined as in eq. (1.4). If Pt differentiable with respect to time, we can
consider the differential Chapman-Kolmogorov equation or the master equation

∂Pt
∂t

= APt, (1.10)

9



1 Introduction

where A is the generator of a semigroup of operators {Pt|t ≥ 0}.

Therefore, given an initial time t0, at time t1 we have

Pt1 = etAPt0 , (1.11)

where t = t1 − t0.

Master equations describe systems that are in exactly one state at any given time and the
switching between states is described probabilistically. If we consider jump processes as well, we
get what is called the Liouville master equation [4],

∂P

∂t
= LP +

∫ t

0

Kdt′, (1.12)

where the integral describes the dissipation of the process and K is called the memory kernel of

the dissipative term. The solution to eq. (1.12) when
∂P

∂t
= 0 describes the steady state of the

process.

1.3 Quantum Master Equations

Analogously to how master equations are defined for conditional transition probability we can
define quantum master equations for the density operator. The Nakajima-Zwanzig approach is
to introduce the Liouville-Von Neumann quantum master equation,

∂ρ(t)

∂t
= L(t)ρ(t). (1.13)

The Liouville operator, L, is defined as Lρ =
−i
~

[H, ρ], where [H, ρ] = Hρ−ρH is the commutator
of the Hamiltonian of the central system H with the density operator. This operator is a
generator of a quantum dynamical semigroup [5], V (t), defined as,

Lρ = lim
t→0+

1

t
(V (t)− I)ρ. (1.14)

From eq. (1.13) we get,
V (t)ρ = etLρ. (1.15)

There exists a form of quantum master equations that is often referred to in the literature
of quantum stochastic processes. We begin by defining the notion of complete positivity. A
semigroup T is said to be completely positive if for any n ∈ N, the tensor product of T with the
identity element In maps positive elements to positive elements [5].

Let Aα be a countable family of operators. A quantum master equation is said to be of the
Lindblad form if there exists a completely positive semigroup generated by a bounded operator
such that,

∂tρ =
−i
~
Lρ+

1

2

∑
α

{[
Aαρ,A

†
α

]
+
[
Aα, ρA

†
α

]}
, (1.16)

The operators Aα are called the Lindblad operators. The condition of complete positivity for such
physical processes was introduced by G. Lindblad in 1976 to describe the nature of irreversibility
of processes in quantum mechanics [6]. Although the Lindblad form is very often considered in
context with open quantum systems, we have not found the need to use this form.

1.4 The Nakajima-Zwanzig Equation

The open quantum system we consider is described with the Liouville-von Neumann equation
for the time-evolution of the density operator ρ. However, the continuous state space of the
leads is too large to allow an effective calculation. A way out of this dilemma was suggested

10



1 Introduction

by Nakajima and Zwanzig who invented a scheme to project the dynamics of the whole system
onto the open central system. We can make a projection of dynamics to give a generalization
of the Liouville-von Neumann equation describing the relevant part of the open system [2, 7, 8].
By doing this we obtain what is called the Nakajima-Zwanzig Equation.

∂tρ = PLρ+

∫ t

0

K(t, t′)ρ(t′)dt′ (1.17)

where, P is a projection operator which projects the Liouville operator onto the relevant part of
the system dynamics. The kernel of the integral, K, over the past history of the central system
describes memory effects caused dissipation of electrons and energy to the external leads. For
our system the Nakajima-Zwanzig equation takes the form [9, 10, 11, 12].

∂tρ = PLρ−
∑
l

Λ(Ω, τ, χ, t)l. (1.18)

Here the sum is over the leads that are coupled to the system. The dissipation term Λ can be
written for a weak coupling to the leads as [2]

Λ(Ω, τ, χ, t) =
1

~2

∫
dqχ(t) {[τ,Ω] + h.c.} , (1.19)

where q is a continuous quantum number representing the momentum and the subband index
in a lead and the operator τ is the coupling tensor of the lead. The coupling tensor is switchd
on abrubtly by the switching function χ, turning on the electron transport through the system.
The operator Ω is given by,

Ω(t) =

∫ t

0

dsχ(s)U(t− s)
{
τ
†
ρ(s)(1− F )− ρ(s)τ

†
F
}
U†(t− s)ei(s−t)ε, (1.20)

where F is the Fermi function which describes the equilibrium distribution of particles over the
energy states before the subsystems are coupled together. U(t− s) = exp {−i(t− s)H/~} is the
unitary time-evolution operator for the closed central system.

Previously, the work of our group has mainly concerned electron-photon interaction in the tran-
sient regime, where systems with non-trivial geometry have been studied. To do this we have
needed a large truncated Fock many-body state space to solve the Nakajima-Zwanzig equa-
tion.

1.5 Problem Outline

The objective of this thesis is to provide a method of solving eq. (1.18) when ∂tρ = 0 i.e. the
steady-state of the system.

The solution consists of the following main parts.

• We explain how we can express the dissipative term, Λ, in terms of the density operator
as is done in [9].

• By representing the density of states in the leads numerically, we transform the integrand
of Λ with respect to q to the energy domain [11]. We show that defining a matrix of Dirac
measures gives us a way to solve an approximative form of the equation exactly.

• The kernel of the integro-differential equation contains numerous terms with the reduced
density operator sandwiched between operators. These operators are represented as ma-
trices in the Fock many-body space of interacting electrons and possibly photons. We will
use a Kronecker tensor product to transform these terms into a standard linear algebra
problem in Liuoville space [13, 14, 15, 16].

• For the transient regime we have used a non-Markovian version of the Nakajima-Zwanzig
equation. In order to find the steady state we relax this condition and seek the Markovian
form of Ω. Our aim is to minimize the approximations needed and allow for the possibility
to calculate the Markovian time-evolution of the system in addition to the non-Markovian
one. However using this approach we can calculate far beyond the transient regime [17].
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2 The Mathematical Model

2.1 The Markov Approximation

We begin by obtaining an expression for the components of the Ω operator. Its utility will
become evident as it will give us a mathematically natural way to express the Markov approxi-
mation.

The Ω operator is given by,

Ω(t) =

∫ t

0

dsχ(s)U(t− s)
{
τ
†
ρ(s)(1− F )− ρ(s)τ

†
F
}
U†(t− s)ei(s−t)ε. (2.1)

We shall let the switch-on function of the leads be χ(s) = 1. The matrix components of the
unitary time-evolution operator, U , in the Fock-space of the Hamiltonian describing the central
system, are given by

U(t− s)αβ = e−i(t−s)Eα/~δαβ , (2.2)

where δαβ is the Kronecker delta symbol. Now, for component (α, β) of the Ω operator we
have

Ω
αβ

(t) =

∫ t

0

ds
{

(1− F )U(t− s)
αλ
τ
†
λσ
ρ(s)

σγ
U(t− s)†

γβ
− FU(t− s)

αλ
ρ(s)

λσ
τ
†
σγ
U(t− s)†

γβ

}
e
i(s−t)ε

.

We define the following functionals,

S[ρ(s)] = π(1− F )τ
†
ρ(s),

R[ρ(s)] = πFρ(s)τ
†
.

The reason for the inclusion of π will become apparent when we make the Markov approxima-
tion.

Thus,

Ω
αβ

(t) =
1

π

∫ t

0

ds
{
e
−i(t−s)Eα

δ
αλ
S[ρ(s)]

λγ
e
i(t−s)Eβδ

γβ
− e−i(t−s)Eαδ

αλ
R[ρ(s)]

λγ
e
i(t−s)Eβδ

γβ

}
e
i(s−t)ε

.

We make a change of variables, such that s = t− s′, then ds′ = −ds and obtain

Ω
αβ

(t) =
1

π

∫ t

0

ds′
{
R[ρ(t− s′)]

αβ
− S[ρ(t− s′)]

αβ

}
e
is′(Eβ−Eα−ε). (2.3)

We now make the Markov approximation. Assuming that ρ(t−s′) is independent of the quantum
fluctuations of the system with a period corresponding to ~/(Eβ − Eα − ε) during the time
evolution, i.e. when s′ ∈ [0, t]. This assumption holds true for t � ~/(Eβ − Eα − ε). Thus,
ρ(t− s) ∼ ρ(t) ≡ ρ and

Ω
αβ

=
{
R[ρ(t)]

αβ
− S[ρ(t)]

αβ

}∫ t

0

ds′e
is′(Eβ−Eα−ε) (2.4)

The upper limit of the time integral can then be approximated with t → ∞. Via the Markov
approximation the integral becomes the Dirac Delta functional, i.e.

Ω
αβ

=
{
R[ρ(t)]

αβ
− S[ρ(t)]

αβ

}
δ (Eβ − Eα − ε) . (2.5)

12



2 The Mathematical Model

We have thus obtained an expression for the components of the Ω operator.

Although this expression looks simple enough, it is rather non-trivial how one should write a
corresponding matrix representation. As one can see the value of each component of this operator
has a very specific dependence on its component number. Later in this chapter we will show
how to solve this dilemma.

The main reason we seek a matrix representation of the equation, is that we want to be able
to construct an efficient computational model which can solve the Nakajima-Zwanzig equa-
tion for our system. Furthermore, we do so with a large number of many-body states in the
central system. We have made several attempts to make such a construction using only the
component representation of the equation but such an attempt quickly spirals into the abyss of
confusion.

2.2 Changing the Domain of the Integral Transformation

Revisiting equation eq. (1.19) we consider how we can solve the integral over the quantum
number q.

For any operator A in the many-body Fock space and its product by Ω, component α, β can be
represented as ∫

dqA(q)
αλ

Ω
λβ

=

∫
dε

(
dq

dε

)
A(ε)

αλ
Ω
λβ
, (2.6)

where
∣∣∣∣dqdε
∣∣∣∣ ≡ D(ε) is the density of states in the energy bands.

It should be apparent now that the Markov approximation allows us to solve this integral in an
exact way.

Last section’s result yields∫
dεD(ε)A(ε)

αλ
Ω
λβ

=

∫
D (ε)A(ε)

αλ

{
R[ρ(t)]

λβ
− S[ρ(t)]

λβ

}
dδ
(
E
β
− E

λ
− ε
)
. (2.7)

Thus each component of the Ω operator induces an integral transformation, with respect to the
Dirac measure. Its output is the intergrand valued at the Bohr-frequency, corresponding to that
component. We shall use upper indices to denote an operator valued at a given frequency.∫

D(ε)A(ε)
αλ

{
R[ρ(t)]

λβ
− S[ρ(t)]

λβ

}
dδ (Eβ − Eλ − ε) = D

βλ
A
βλ

αλ

{
R[ρ(t)]

βλ

λβ
− S[ρ(t)]

βλ

λβ

}
.

This is as far as we need to go but for the sake of the argument, we shall show where the
component representation leads us.

Let R[ρ] = ρR and S[ρ] = Sρ. Then for component (α, β) of the functional from eq. (1.19) we
have by the above results

~2Λ = D
βλ
τ
βλ

αλ
ρ
λσ
R
βλ

σβ
−Dβλ

τ
βλ

αλ
S
βλ

λσ
ρ
σβ
−Dλα

ρ
ασ
R
λα

σλ
τ
λα

λβ
+D

λα
S
λα

ασ
ρ
σλ
τ
λα

λβ
+ h.c.. (2.8)

For simplification we shall only look at the first two terms. We can express them as,

D
βλ
τ
βλ

αλ

{
S
βλ

λσ
ρ
σβ
− ρ

λσ
R
βλ

σβ

}
= D

βλ
τ
βλ

αλ
S
βλ

λσ
ρ
σβ
−Dβλ

τ
βλ

αλ
ρ
λσ
R
βλ

σβ
(2.9)

From this expression, obtaining a component of the density matrix, requires a meticulous col-
lection of terms related to it. E.g. the terms associated with component (1, 1) in the expression
above are ∑

αλ

(
D

1λ
τ
1λ

αλ
S
1λ

λ1
ρ
11
−D1λ

τ
1λ

αλ
ρ
λ1
R

1λ

11

)
(2.10)
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2 The Mathematical Model

and ∑
αβ

(
D
β1
τ
β1

α1
S
β1

11
ρ
1β
−Dβ1

τ
β1

α1
ρ
11
R
β1

1β

)
. (2.11)

And this becomes even more convoluted as we consider the other six terms. Thus it is clear that
a more sophisticated approach is needed. In the following section we provide such an approach
and show how to obtain exact expressions for each component of the density matrix from the
results that we have in section 2.2.

2.3 The Hadamard Product & The Dirac Delta Matrix

We have seen that the source of non-triviality in the equations is that the integral transformation,
induced by the Markov approximation is related to the index of the Ω component. Our aim
will be to express this relation while conserving the relation between the physical operators at
stake.

Firstly, we define a matrix of Dirac Delta functionals such that,

∆αβ = δ(Eα − Eβ − ε) = δ
αβ
. (2.12)

We will call this “The Dirac Delta Matrix”. We can wield this structure to unravel the threads
of confusion via the Hadamard product (�), i.e. a component wise multiplication between two
matrices.

(A�B)αβ = AαβBαβ . (2.13)

The Hadamard product is commutative, associative and distributive over addition. However it
is not distributive over matrix multiplication. For demonstration, let A and B be any operators
in the Fock space and consider terms of the form

∫
DAΩB. As a shorthand notation we let

R[ρ(t)] = R and S[ρ(t)] = S.

Let Z be the matrix which corresponds to the general form of terms which we have encountered.
It is a measure over the density of states. Its component representation is given by:

Z
αβ

= D
σλ
A
σλ

αλ

{
Rσλ
λσ
− Sσλ

λσ

}
B
σλ

σβ
, (2.14)

and its matrix representation is given by:

Z =

∫
DA

{(
R − S

)
� d∆T

}
B. (2.15)

Proof. We have,

∆T =


δ11 δ21 · · · δn1

δ12 δ22 · · · δn2

...
...

. . .
...

δ1n δ2n · · · δnn

 (2.16)

Then,

(
R − S

)
�∆T =


(
R

11
− S

11

)
δ
11 (

R
12
− S

12

)
δ
21 · · ·

(
R

1n
− S

1n

)
δ
n1(

R
21
− S

21

)
δ
12 (

R
22
− S

22

)
δ
22 · · ·

(
R

2n
− S

2n

)
δ
n2

...
...

. . .
...(

R
n1
− S

n1

)
δ
1n (

R
n2
− S

n2

)
δ
2n · · ·

(
R
nn
− S

nn

)
δ
nn

 . (2.17)

By multiplying this matrix with the matrices associated with the operators A and B (from left
and right respectively), we get

Z =


∫
DA

1λ

(
R
λσ
− S

λσ

)
B
σ1
dδ
σλ ∫

DA
1λ

(
R
λσ
− S

λσ

)
B
σ2
dδ
σλ · · ·

∫
DA

1λ

(
R
λσ
− S

λσ

)
B
σn
dδ
σλ∫

DA
2λ

(
R
λσ
− S

λσ

)
B
σ1
dδ
σλ ∫

DA
2λ

(
R
λσ
− S

λσ

)
B
σ2
dδ
σλ · · ·

∫
DA

2λ

(
R
λσ
− S

λσ

)
B
σn
dδ
σλ

...
...

. . .
...∫

DA
nλ

(
R
λσ
− S

λσ

)
B
σ1
dδ
σλ ∫

DA
nλ

(
R
λσ
− S

λσ

)
B
σ2
dδ
σλ · · ·

∫
DA

nλ

(
R
λσ
− S

λσ

)
B
σn
dδ
σλ

 .
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2 The Mathematical Model

So component (α, β) can be written as:

Z
αβ

= D
σλ
A
σλ

αλ

{
Rσλ
λσ
− Sσλ

λσ

}
B
σλ

σβ
(2.18)

Now for the case of A = τ and B = Id, where Id is the identity operator, we have:

Z = Dτ
{(
R − S

)
�∆T

}
. (2.19)

It is easy to show that the Hadamard product of two matrices cannot be represented by a linear
transformation in a space, however this turns out not to be the case when one considers a tensor
product on that space. In the next section we will make use of this structure and show how this
can be done. Consequently it will become attainable to invent a computational scheme using
the parallel Intel BLAS in Fortran.

The reason we use the parallel Intel BLAS in Fortran is because of its speed and our existing
codebase. Using Python we can use QuTiP [18] which allows one to investigate the dynam-
ics of an open quantum system. QuTiP has been used to look for iterative solutions to the
steady-state of an optomechanical system [19]. Although the eigenvalue routine that we use is
iterative, we use it as a black box without any particular conditioning which could speed up the
calculations.

2.4 The Liouville Tensor Space

To obtain an expression for each component of the density matrix we introduce algebraic op-
erators in the Kronecker product space of the Fock space. We have seen at the end of section
2.2, that obtaining such an expression in the component representation required meticulous
bookkeeping of an overwhelming number of indices. The insight gained in the previous section
however, offers a new path around this problem.

The elements of the Kronecker product of any vector space are blockmatrices given by the tensor
product

A⊗B =


A

1,1
B A

1,2
B · · · A

1,n
B

A
2,1
B A

2,2
B · · · A

2,n
B

...
...

. . .
...

A
n,1
B A

n,2
B · · · A

n,n
B

 (2.20)

Where we assume that A and B are operators in the Fock many-body space represented by n×n
matrices.

There are a couple of algebraic operators that we will consider with regards to the elements of
this space. These operators will allow us to obtain the solutions in a convenient form.
Definition 2.4.1. Let A be an n × n matrix. The vectorization of a A is the linear operator
which converts the matrix A into an n2 dimensional column vector given by,

vec (A) = [A1,1, . . . , An,1, A1,2, . . . , An,2, . . . , A1,n, . . . , An,n]
T (2.21)

Definition 2.4.2. The diagonalization operator for any n × n matrix A is a linear operator
which produces an n2 × n2 matrix defined by,

Diag(A) =



A1,1 0 · · · · · · · · · · · · 0
0 A2,1 · · · · · · · · · · · · 0
...

...
. . . · · · · · · · · ·

...
...

... 0 An,1 · · · · · · 0
...

...
... 0 A1,2 · · · 0

...
...

...
...

...
. . .

...
0 0 0 · · · · · · 0 An,n


(2.22)
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2 The Mathematical Model

i.e. an operator that takes the column vectors, stacks them up and puts them on the main
diagonal.

For the Dirac Delta matrix we shall let,

∆T
β =


δβ1 0 · · · 0
0 δβ2 0 0
...

...
. . .

...
0 0 · · · δβn

 (2.23)

Thus we can see that,

Diag(∆T ) =


∆T

1 0 · · · 0
0 ∆T

2 · · · 0
...

...
. . .

...
0 0 · · · ∆T

n

 (2.24)

Theorem 2.4.1. Let A, ρ, and B be matrices representing elements in an n× n vector space.

The following identities hold true:

i) vec(AρB) =
(
BT ⊗A

)
vec(ρ)

ii) vec(A�B) = Diag(B) vec(A)

iii) vec(A�B) = vec(A)� vec(B)

We omit the proof. One can be found in [20] for example.

By the first identity we can see that any equation such as

Z = AρB, (2.25)

can be put on the form:
vec(Z) =

(
BT ⊗A

)
vec(ρ). (2.26)

Thus enabling a way to find values of ρ that fulfill the equation.

Furthermore, we can use these identities to help us unravel the mysteries concerning the dissi-
pative terms from eq. (1.19). The integral takes the form,

ZAB =

∫
DA

{
(R[ρ]− S[ρ])� d∆T

}
B, (2.27)

where the subscript denotes the operators on each side of the factor containing the measure.

By applying the vectorization operator we get by identity i),

vec(ZAB) =

∫ (
BT ⊗DA

)
vec
(
{R[ρ]− S[ρ]} � d∆T

)
. (2.28)

We note that the Hadamard product is distributive over addition, and the vec operator is linear
in the Kronecker product space. Therefore by writing R = Rρ and S = Sρ we have,

vec(ZAB) =

∫ (
BT ⊗DA

)
vec
(
Sρ� d∆T

)
−
∫ (

BT ⊗DA
)

vec
(
ρR� d∆T

)
. (2.29)

We denote the former integral by IAB and the latter by ĨAB with the subscript referencing the
operators multiplied by from left and right.

By theorem 2.4.1,

IAB =

∫ (
BT ⊗DA

)
Diag(d∆T ) (I ⊗ S) (2.30)
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2 The Mathematical Model

where I is the identity operator in the Liouville space. Notice that the Dirac matrix must escape
the vectorization operator in precedence of S as the Hadamard product is not distributive over
matrix multiplication.

An important observation is that the density operator has escaped the integral as it does not
depend on the measures, Diag(d∆T ).

IAB =

(∫ (
BT ⊗DA

)
Diag(d∆T )

)(∫
Diag(d∆T ) (I ⊗ S)

)
. (2.31)

This result will prove convenient when we build the corresponding computational model.

Proceeding with the latter integral as we did with the former, results in

ĨAB =

(∫ (
BT ⊗DA

)
Diag(d∆T )

)(∫
Diag(d∆T )

(
RT ⊗ I

))
. (2.32)

Thus we have reached our objective. The kernel of the dissipator Λ in equation eq. (1.19) can
now be written as,

vec(Λ) =
1

~2
(
IIτ − ĨIτ + IτI − ĨτI + h.c.

)
vec(ρ). (2.33)

2.5 Preparing the Eigenvalue Problem

Using the results from last section we can write the Nakajima-Zwanzig equation as

∂t vec(ρ) = − i
~

(
I ⊗H −HT ⊗ I +

∑
(I + h.c.)

)
vec(ρ). (2.34)

The sum is over the matrix components derived in the last section. We can write this equation
as

∂t vec(ρ) = −iL vec(ρ). (2.35)

We solve it in the Liouville space by performing matrix diagonalization on L. This is done by
finding the left and the right eigenvectors, U and B, satisfying,

LB = BLdiag (2.36)

and

UL = LdiagU (2.37)

with

UB = I (2.38)
BU = I. (2.39)

The diagonal matrix is Ldiag and I is the identity operator. eq. (2.35) can now be solved as

vec(ρ(t)) =

(
U exp− i

~
Ldiag(t)B

)
vec(ρ(0)). (2.40)

As the time evolves the collection of the exponential terms in the component equation, which
we investigated in section 2.1, approach the Dirac measure. Thus, for our system, the limit of
this equation is a reliant way to seek the steady state. We iterate through the equation until we
reach the limit, in the way obtaining an estimate of the transient behaviour of the system. In
the next chapter we analyze computational results obtained in this manner.
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3 The Composition of the Liouville
Operator

3.1 Constructing the Markovian Components

In this chapter we will show how the results we’ve obtained in the previous chapter can aid in
constructing a computational model. Based on those results, in the Liouville tensor space the
Nakajima-Zwanzig equation, eq. (1.18) takes the form,

∂t vec(ρ) =
−i
~

(I ⊗H −HT ⊗ I) vec(ρ) +

∫
dε vec(Λ). (3.1)

The only non-trivial feature of this equation is how vec(Λ) is built. Nontheless, upon closer
scrutiny it turns out that its structure is rather simple in terms of block matrices. In what
follows we will prove a simple algorithm that constructs one of the factors from eq. (2.33). We
will see that our mathematical structure allows us to construct the operators in the Liouville
space with time complexity of O(n3), where n is the number of many-body states in the truncated
Fock space. We consider the special case of the following factor from eq. (2.33). Other factors
from that equation can be analyzed in a similar manner.

IτI =

(∫
(I ⊗Dτ) Diag

(
d∆T

))(∫
Diag

(
d∆T

)
(I ⊗ S)

)
(3.2)

By definition we have:

(I ⊗Dτ) =


Dτ 0 · · · 0
0 Dτ · · · 0
... 0

. . .
...

0 0 · · · Dτ

 (3.3)

thus,

(I ⊗Dτ) Diag(∆T ) =


Dτ 0 · · · 0
0 Dτ · · · 0
... 0

. . .
...

0 0 · · · Dτ




∆T
1 0 · · · 0

0 ∆T
2 · · · 0

...
...

. . .
...

0 0 · · · ∆T
n

 (3.4)

which yields a block diagonal matrix,

(I ⊗Dτ) Diag(∆T ) =


Dτ∆T

1 0 · · · 0
0 Dτ∆T

2 · · · 0
...

...
. . .

...
0 0 · · · Dτ∆T

n

 (3.5)

where block β corresponds to

Dτ∆T
β =


Dτ11δ

β1 Dτ12δ
β2 · · · Dτ1nδ

βn

Dτ21δ
β1 Dτ22δ

β2 · · · Dτ2nδ
βn

...
...

. . .
...

Dτn1δ
β1 Dτn2δ

β2 · · · Dτnnδ
βn

 (3.6)
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3 The Composition of the Liouville Operator

And one can see that
∫ (

Dτd∆T
β

)
αλ

=
∫
Dτ

αλ
dδβλ = D

βλ
τ
βλ

αλ
.

Now the objective is to use this to construct the matrix that corresponds to the Kronecker
product ∫

(I ⊗Dτ) Diag(d∆T ) (3.7)

By keeping in mind that β corresponds to the number of the block diagonal matrix and using
the corresponding results that we’ve just obtained we conclude:

D
βλ
τ
βλ

αλ
=
(
(I ⊗Dτ) Diag(∆T )

)
n(β−1)+α,n(β−1)+λ (3.8)

That is, element (α, λ) in block matrix β is element (n(β − 1) + α, n(β − 1) + λ). in the Tensor

product matrix
∫
dε (I ⊗Dτ) Diag(∆T )

To construct this matrix we implement the following pseudo-code:

! We reset the matrix that we’re about to construct as the zero matrix.∫
(I ⊗Dτ) Diag(∆T ) = Czero

! This is the number of the block matrix on the diagonal
! The Dirac delta function that acts on block matrix β is δ(ε− (Eβ − Eλ))
DO β = 1, n

DO λ = 1, n
! Reference a 4 dimensional array that contains Dτ at all energies
D
βλ
τ
βλ

= Dτ
REG

(β, λ, :, :)
DO α = 1,n∫

(I ⊗Dτ) Diag(∆T )n(β−1)+α,n(β−1)+λ =
(
Dβλτβλ

)
αλ

END DO
END DO

END DO

Moving onto the latter factor,
∫

Diag
(
∆T
)

(I ⊗ S), by a similar argument as before we get the
block diagonal matrix,

Diag(∆T ) (I ⊗ S) =


∆T

1 S 0 · · · 0
0 ∆T

2 S · · · 0
...

...
. . .

...
0 0 · · · ∆T

nS

 (3.9)

where block β corresponds to

∆T
βS =


δβ1 0 · · · 0
0 δβ2 0 0
...

...
. . .

...
0 0 · · · δβn



S
1,1

S
1,2

· · · S
1,n

S
2,1

S
2,2

· · · S
2,n

...
...

. . .
...

S
n,1

S
n,2

· · · S
n,n

 (3.10)

which gives:

∆T
βS =


S11δ

β1 S12δ
β1 · · · S1nδ

β1

S21δ
β2 S22δ

β2 · · · S2nδ
β2

...
...

. . .
...

Sn1δ
βn Sn2δ

βn · · · Snnδ
βn

 (3.11)

And one can see that
(

∆T
βS
)
λσ

= S
λσ
δ
βλ

= S
βλ

λσ
.

As before we use this result to construct the program that corresponds to the factor∫
dεDiag

(
∆T
)

(I ⊗ S) (3.12)
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3 The Composition of the Liouville Operator

Now β corresponds to the number of the block diagonal matrix and λ corresponds to the line
number within that matrix and σ corresponds to the column number within that matrix.

S
βλ

λσ
=

∫
dε
(
Diag

(
∆T
)

(I ⊗ S)
)
n(β−1)+λ,n(β−1)+σ (3.13)

That is, element (λ, σ) in block matrix β is element (n(β − 1) + λ, n(β − 1) + σ).

We construct the matrix with the following pseudo-code.

! We reset the matrix that we’re about to construct as the zero matrix.∫
Diag(∆T )(I ⊗ S) = Czero

! This is the number of the block matrix on the diagonal
! The Dirac delta function that acts on block matrix β is δ(ε− (Eβ − Eλ))
DO β = 1, n

DO λ = 1, n
! Reference a 4 dimensional array that contains Dτ at all energies
S
βλ

= π(1− F βλ)ConjugateTranspose(τ
REG

(β, λ, :, :))
DO σ = 1,n∫

Diag(∆T ) (I ⊗ S)n(β−1)+λ,n(β−1)+σ = S
βλ

λσ
END DO

END DO
END DO

If we look at the multiplication of the two factors again with respect to what we’ve done,

Z =

∫
dε (I ⊗Dτ) Diag

(
∆T
) ∫

dεDiag
(
∆T
)

(I ⊗ S) (3.14)

⇔

Z =


Dτ∆T

1 0 · · · 0
0 Dτ∆T

2 · · · 0
...

...
. . .

...
0 0 · · · Dτ∆T

n




∆T
1 S 0 · · · 0
0 ∆T

2 S · · · 0
...

...
. . .

...
0 0 · · · ∆T

nS

 (3.15)

⇔

Zβλ
ασ

=D
βλ
τ
βλ

αλ
S
βλ

λσ
(3.16)

Thereby proving that the algorithm produces the factors given in eq. (2.8).
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4 Computational Results

4.1 The Loss of Transient Information

From the model we have derived, we compile the Nakajima-Zwanzig equation and solve it using
Intel MKL BLAS routines for CPU or CUBLAS routines on NVidia Tesla M2090 GPU. Our
findings describe the electron transport through the central system, a nano electronic system
in a photon cavity, which is weakly connected to leads acting like external reservoirs. The flow
of electrons through the system depends on the initial configuration of the system, such as the
number of photons in the cavity and their energy, the difference in chemical potential between
the leads, as well as the plunger gate voltage. The plunger gate voltage places a certain part
of the energy spectrum of the many-body states within the bias window. We consider three
different scenarios in which we have 0, 1 or 2 photons in the photon cavity initially.

For the closed system, before it is coupled to the leads, we can observe its many-body energy
specrum as a function of the plunger gate voltage seen in section 4.1 as a function of the plunger
gate voltage Vg. In total we have 120 many-body states in the truncated Fock Space.
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Figure 4.1: The many-body energy spectrum of the closed central system as a
function of the plunger gate voltage Vg. The golden horizontal lines indicate the
chemical potential of the left lead µL = 1.4 meV, and the right lead µR = 1.1
meV. 1G denotes the one-electron groundstate, 2G the two-electron one, and
1G1γ± stands for the Rabi-split first photon replica of the 1G. B = 0.1 T,
gEM = 0.05 meV, m∗ = 0.067me, and g = −0.44. The horizontal purple dotted
lines are photon states with zero electrons.

The change in energy of each many-body state with respect to the plunger gate voltage depends
linearly on the number of electrons resulting in a steeper ascent for states containing two elec-
trons. Rabi splitting of electron states occur when the energy of the photon cavity is close to
the Bohr frequency of the electron states. A superposition of Rabi split states represents a state
when the photons are repeatedly absorbed and emitted.

In fig. 4.2 we can see the energy and the spin components for relevant many-body states |µ) as
well as their mean electron and photon numbers. The states are counted from left to right. For
the time evolution we will seek to observe how these states are charged or occupied according
to the computational scheme, ultimately converging to the the steady state.
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Figure 4.2: The energy, the electron number Ne, the mean photon number Nγ ,
and the spin sz for each many-body state |µ) for Vg = −1.6 meV. The yellow
horizontal lines indicate the bias window. Other parameters as in section 4.1

We let the Vg = −1.9 meV and weakly couple the central system to the leads, abrubtly, at
time t = 0. The Markovian time-evolution is expressed according to the solution of eq. (2.40)
and is shown in section 4.1 on a logarithmic time scale for the total mean electron and photon
number.
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Figure 4.3: The mean values of the total electron (purple) and photon (green)
numbers as functions of time for Vg = −1.9 meV. The initial number of photons
in the cavity is zero (top-left), one (top-right) or two (bottom).

Looking at the transient regime we see that the mean number of photons ”spikes“ on the loga-
rithmic scale in the time interval 0.1 − 100 µs. This spike accelerates the number of electrons
in the system slightly as its magnitude increases corresponding to the number of photons in
the initial configuration. For all cases the system has reached the same steady state for time
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4 Computational Results

t > 10−4 s, suggesting a loss of transient information.

This is confirmed by viewing the occupation of the many body states during the time evolution
as in section 4.1.
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Figure 4.4: The mean occupation of the many-body states as a function of time,
for Vg = −1.9 meV. Only states with relevant occupation are listed. The ini-
tial number of photons in the cavity is zero (top-left), one (top-right) or two
(bottom).

Interestingly these figures show that the transient history of the three scenarios are actually
quite different despite the steady-state being the same. For all three scenarios the steady state
is mainly composed of the states |1), |2) and |8), where |1) and |2) are the ground states for 1
and 2 photons respectively.

With zero photons in the cavity at time t = 0, we get a considerable charging of state |15), |16), |20)
and |21), which are single electron states, just above the bias window in section 4.1. With a
single photon in the cavity at the beginning we get a charging of states |30) and |31). These are
single electron-single photon states with spin up and down respectively which are in the upmost
right corner above the bias window in section 4.1. In both cases the charging starts at around
t ∼ 10ps and lasts until t ∼ 1000ps when a charging of the vacuum state and single electron

states with many photons starts. The charging of the vacuum state in all three scenarios occurs
at t = 100µs to t = 1µs, preceding a charging of mixed states before the steady state is reached

before t > 10µs. With two photons the steady-state remains the same but since states with two
photon components are situated high above the bias window we do not see a charging of those
states in the cavity.

The computations therefore suggest that any information about the transient behaviour of the
system can not be retrieved from its steady state for the selected scenarios. With photons
initially in the cavity entering electrons are promoted electromagnetically to states above the
bias window. As time evolves these electrons cascade down to the steady state, which remains
the same for the different configurations we consider.
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5 Conclusion

This thesis shows that under the Markov approximation the Nakajima-Zwanzig equation for a
multi-level system of complex geometry can be cast into an eigenvalue problem in the Liouville
tensor space. This representation was obtained by considering the matrix form of the equation,
which becomes attainable by introducing a Hadamard product of a matrix of Dirac measures.
Building on these mathematical results, a simple algorithm constructing the matrix components
of the problem was proved to be consistent with previously known representations as well as
providing an insight into the scale of the time evolution for large many-body systems in a
profoundly new manner.

Computational results suggest that any transient information is lost as the steady state of the
system is obtained. Nontheless, the state of the system at both the transient and the intermediate
time scales is strongly dependent on the initial state of the system. At the intermediate time scale
electromagnetic transitions become active and are important in the evolution towards the steady
state. Our findings are consistent with theoretically proven results that steady state correlation
functions are independent of the initial state of the inner sample for mesoscopic systems with
interacting fermions [21].
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